If $x^2 - 6x + α = 0 has two roots α, β and 3α + 2β = 20, then find a.

** Option:**

**A.**- 16

**B.**8

**C.**4

**D.**- 2

**Answer: A . - 16**

** Justification:**

Here, one root of the equation $x^2 - 6x + k - 3 = 0$ is the complex number 3 + 2i.

Hence the root is 3 - 2i.

Now, product of the roots : $c/a = {k - 3}/1 = k - 3$

.`. k - 3 = (3 + 2i)(3 - 2i)

.`. k - 3 = $9 - 4i^2$

.`. k - 3 = 9 - 4

.`. k = 16